Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-[N-(thiazol-2-yl)carbamoyl]benzoate

Zu-Pei Liang,^a* Jian Li,^a Ai-Yu Wan^b and Hui-Qin Wang^a

^aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and ^bQingdao Huaren Pharmaceutical Co. Ltd., Qingdao 266101, People's Republic of China Correspondence e-mail: zupeiliang@yahoo.com.cn

Received 9 April 2007; accepted 27 April 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.113; data-to-parameter ratio = 15.5.

In the title molecule, $C_{12}H_{10}N_2O_3S$, the dihedral angle between the thiazole ring and benzene ring is 87.5 (2)°. In the crystal structure, intermolecular N-H···N hydrogen bonds form centrosymmetric dimers. There is an intramolecular $C-H \cdots O$ interaction.

Related literature

The bond lengths and angles of the title compound agree with those of N-(2-bromothiazol-5-ylmethyl)phthalimide (Li et al., 2006).

Experimental

Crystal data

,	
$C_{12}H_{10}N_2O_3S$	V = 2513 (2) Å ³
$M_r = 262.28$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 14.921 (7) Å	$\mu = 0.26 \text{ mm}^{-1}$
b = 8.885 (5) Å	T = 294 (2) K
c = 18.954 (10) Å	$0.24 \times 0.22 \times 0.20$ mm

Data collection

Bruker SMART CCD 13481 measured reflections diffractometer 2608 independent reflections Absorption correction: multi-scan 1727 reflections with $I > 2\sigma(I)$ (SADABS; Bruker, 1997) $R_{\rm int} = 0.055$ $T_{\min} = 0.941, \ T_{\max} = 0.950$

Refinement

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1 F

D-

N2 C9-

Iydrogen-bond	geometry	(A,	°).	
---------------	----------	-----	-----	--

$-H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$-H2A\cdots N1^{i}$	0.86 (2)	2.06 (2)	2.913 (3)	175
-H9···O3	0.93	2.40	2.725 (3)	100

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Doctoral Foundation of Weifang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2365).

References

Bruker (1997). SADABS (Version 2.01), SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Li, J.-T., Wang, J.-K. & Zhou, L.-N. (2006). Acta Cryst. E62, o2327-o2328.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o2819 [doi:10.1107/81600536807021241]

Methyl 2-[N-(thiazol-2-yl)carbamoyl]benzoate

Z.-P. Liang, J. Li, A.-Y. Wan and H.-Q. Wang

Comment

Thiazole and its derivatives are widely used in the fields of biology and for the synthesis of antibiotic and antipyrotic materials. In this paper, the structure of the title compound, (I), is reported. The molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles of the title compound agree with those common to N-(2-Bromothiazol-5-ylmethyl)phthalimide (Li *et al.*, 2006). The dihedral angle between the thiazole ring and benzene ring is 87.5 (2) °. In the crystal structure, centrosymmetric dimers are formed via intermolecular N—H···N hydrogen bonds (Fig. 2 and Table 1) and a weak intramolecular C—H···O hydrogen bond may influence the conformation of the molecule.

Experimental

Isobenzofuran-1,3-dione (0.02 mol) in methanol (15 ml) was refluxed for 0.5 h, and then cooled. Thiazol-2-amine (0.02 mol) was added to the above solution and was refluxed for 4 h. After cooling, filtration and drying, the title compound was obtained. 10 mg of (I) was dissolved in 10 ml acetone, and the solution was kept at room temperature for 10 d. Natural evaporation gave light yellow single crystals of the title compound, suitable for X-ray analysis.

Refinement

The H atoms bonded to C atoms were positioned geometrically (C—H = 0.93-0.96 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or 1.5 $U_{eq}(methyl C)$. The H atom bonded to N2 was refined isotropically.

Figures

Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.

Fig. 2. The crystal packing of (I), viewed along b axis. Hydrogen bonds are indicated by dashed lines.

methyl 2-(thiazol-2-ylcarbamoyl)benzoate

 $C_{12}H_{10}N_2O_3S$ $M_r = 262.28$ Orthorhombic, Pbca Hall symbol: -P 2ac 2ab *a* = 14.921 (7) Å b = 8.885 (5) Å*c* = 18.954 (10) Å V = 2513 (2) Å³ Z = 8

Data collection

Bruker SMART CCD diffractometer	2608 independent reflections
Radiation source: fine-focus sealed tube	1727 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.055$
T = 294(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -9 \rightarrow 18$
$T_{\min} = 0.941, \ T_{\max} = 0.950$	$k = -11 \rightarrow 10$
13481 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.113$

S = 1.03

2608 reflections

168 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Mo Kα radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3562 reflections $\theta = 2.6 - 25.8^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 294 (2) KBlock, light yellow $0.24 \times 0.22 \times 0.20 \text{ mm}$

 $F_{000} = 1088$

 $D_{\rm x} = 1.387 {\rm ~Mg} {\rm ~m}^{-3}$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0535P)^2 + 0.5869P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.21 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.30 \text{ e} \text{ Å}^{-3}$ Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y **S**1 0.0567(2)0.73851 (3) 0.02588 (8) 0.42504(3)N2 0.55727 (10) 0.07951 (18) 0.41824 (8) 0.0384 (4) 01 0.63380 (10) 0.1711 (2) 0.32477 (8) 0.0662 (5) O2 0.54989 (12) 0.43035 (19) 0.41001 (10) 0.0751 (5) O3 0.44802 (11) 0.59151 (18) 0.37036 (9) 0.0646(5)N1 0.61790 (10) -0.0419(2)0.51622 (9) 0.0471(4)C1 0.77031 (14) -0.0651(3)0.50073 (12) 0.0654(7)H1 -0.09220.078* 0.8289 0.5116 C2 0.69962 (14) -0.0916(3)0.54175 (12) 0.0585 (6) H2 0.7048 -0.14050.5849 0.070* C3 0.62959 (12) 0.0223 (2) 0.45511 (9) 0.0364 (4) C4 0.1532 (2) 0.35544 (10) 0.0399 (5) 0.56328 (12) C5 0.47413 (12) 0.1974 (2) 0.32457 (9) 0.0380 (4) C6 0.42858 (14) 0.28470 (10) 0.0902(2)0.0485 (5) H6 0.4521 -0.00630.2801 0.058* C7 0.34829 (16) 0.1262 (3) 0.25173 (11) 0.0598 (6) H7 0.072* 0.3182 0.0538 0.2254 C8 0.31331 (16) 0.2682 (3) 0.25796 (13) 0.0659(7) H8 0.2598 0.2922 0.2355 0.079* C9 0.35732 (15) 0.3755 (3) 0.29740 (12) 0.0569 (6) H9 0.3332 0.4716 0.3014 0.068* C10 0.43748 (12) 0.3416 (2) 0.33131 (9) 0.0397 (5) C11 0.48523 (14) 0.4555 (2) 0.37476 (11) 0.0453 (5) C12 0.4931 (2) 0.7107 (3) 0.40852 (16) 0.0859 (9) H12A 0.5015 0.6807 0.4567 0.129* H12B 0.4573 0.8004 0.4069 0.129* H12C 0.5503 0.7299 0.3872 0.129* H2A 0.5057 (14) 0.075 (2) 0.4383 (10) 0.042 (6)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
-					•

supplementary materials

S1	0.0282 (3)	0.0935 (5)	0.0485 (3)	0.0046 (3)	0.0109 (2)	0.0111 (3)
N2	0.0248 (8)	0.0530 (10)	0.0373 (9)	-0.0002 (7)	0.0078 (7)	0.0077 (7)
01	0.0361 (8)	0.1083 (13)	0.0543 (9)	-0.0039 (8)	0.0139 (7)	0.0255 (9)
O2	0.0716 (12)	0.0633 (11)	0.0904 (13)	-0.0096 (9)	-0.0457 (10)	-0.0053 (9)
O3	0.0687 (11)	0.0502 (10)	0.0749 (11)	-0.0021 (8)	-0.0053 (8)	-0.0082 (8)
N1	0.0304 (8)	0.0699 (12)	0.0412 (9)	0.0042 (8)	0.0065 (7)	0.0133 (8)
C1	0.0334 (12)	0.106 (2)	0.0564 (14)	0.0159 (12)	0.0024 (10)	0.0109 (13)
C2	0.0372 (12)	0.0905 (18)	0.0479 (12)	0.0139 (12)	0.0010 (10)	0.0168 (12)
C3	0.0275 (9)	0.0450 (11)	0.0366 (10)	0.0005 (8)	0.0050 (7)	-0.0006 (9)
C4	0.0342 (10)	0.0509 (12)	0.0347 (10)	-0.0026 (9)	0.0054 (8)	0.0018 (9)
C5	0.0349 (10)	0.0505 (12)	0.0286 (9)	-0.0086 (9)	0.0035 (7)	0.0050 (9)
C6	0.0549 (13)	0.0525 (13)	0.0380 (11)	-0.0120 (10)	0.0037 (9)	-0.0016 (9)
C7	0.0609 (14)	0.0755 (17)	0.0430 (12)	-0.0280 (13)	-0.0145 (10)	-0.0002 (12)
C8	0.0515 (14)	0.0804 (18)	0.0659 (15)	-0.0114 (13)	-0.0307 (12)	0.0148 (13)
C9	0.0478 (13)	0.0577 (14)	0.0651 (14)	-0.0021 (11)	-0.0173 (10)	0.0106 (12)
C10	0.0354 (10)	0.0463 (12)	0.0374 (10)	-0.0095 (9)	-0.0060 (8)	0.0060 (8)
C11	0.0450 (12)	0.0468 (13)	0.0441 (11)	-0.0098 (10)	-0.0016 (9)	0.0045 (9)
C12	0.104 (2)	0.0569 (17)	0.097 (2)	-0.0212 (15)	0.0113 (18)	-0.0230 (15)

Geometric parameters (Å, °)

S1—C1	1.714 (2)	C5—C6	1.393 (3)
S1—C3	1.7224 (19)	C5—C10	1.399 (3)
N2—C4	1.362 (2)	C6—C7	1.389 (3)
N2—C3	1.382 (2)	С6—Н6	0.9300
N2—H2A	0.86 (2)	C7—C8	1.370 (3)
O1—C4	1.213 (2)	С7—Н7	0.9300
O2—C11	1.194 (2)	C8—C9	1.378 (3)
O3—C11	1.333 (3)	C8—H8	0.9300
O3—C12	1.448 (3)	C9—C10	1.391 (3)
N1—C3	1.303 (2)	С9—Н9	0.9300
N1—C2	1.384 (3)	C10-C11	1.487 (3)
C1—C2	1.331 (3)	C12—H12A	0.9600
С1—Н1	0.9300	C12—H12B	0.9600
С2—Н2	0.9300	C12—H12C	0.9600
C4—C5	1.505 (3)		
?…?	?		
C1—S1—C3	88.60 (10)	С5—С6—Н6	119.8
C4—N2—C3	124.56 (16)	C8—C7—C6	120.1 (2)
C4—N2—H2A	117.9 (13)	С8—С7—Н7	119.9
C3—N2—H2A	117.3 (13)	С6—С7—Н7	119.9
C11—O3—C12	116.0 (2)	C7—C8—C9	120.1 (2)
C3—N1—C2	109.42 (16)	С7—С8—Н8	119.9
C2-C1-S1	110.66 (17)	С9—С8—Н8	119.9
С2—С1—Н1	124.7	C8—C9—C10	120.7 (2)
S1—C1—H1	124.7	С8—С9—Н9	119.6
C1-C2-N1	115.9 (2)	С10—С9—Н9	119.6
С1—С2—Н2	122.0	C9—C10—C5	119.50 (18)
N1—C2—H2	122.0	C9—C10—C11	121.4 (2)

N1—C3—N2	120.38 (16)	C5-C10-C11	119.11 (17)
N1—C3—S1	115.37 (14)	O2—C11—O3	122.7 (2)
N2—C3—S1	124.23 (14)	O2—C11—C10	124.7 (2)
O1—C4—N2	122.64 (18)	O3—C11—C10	112.52 (18)
O1—C4—C5	123.11 (17)	O3—C12—H12A	109.5
N2—C4—C5	114.02 (15)	O3—C12—H12B	109.5
C6—C5—C10	119.03 (18)	H12A—C12—H12B	109.5
C6—C5—C4	117.61 (18)	O3—C12—H12C	109.5
C10-C5-C4	123.30 (17)	H12A—C12—H12C	109.5
C7—C6—C5	120.5 (2)	H12B-C12-H12C	109.5
С7—С6—Н6	119.8		
C3—S1—C1—C2	0.3 (2)	C4—C5—C6—C7	-176.65 (17)
S1—C1—C2—N1	-0.2 (3)	C5—C6—C7—C8	0.3 (3)
C3—N1—C2—C1	0.0 (3)	C6—C7—C8—C9	-0.5 (4)
C2—N1—C3—N2	179.05 (18)	C7—C8—C9—C10	0.0 (4)
C2—N1—C3—S1	0.2 (2)	C8—C9—C10—C5	0.7 (3)
C4—N2—C3—N1	177.45 (19)	C8—C9—C10—C11	-179.2 (2)
C4—N2—C3—S1	-3.8 (3)	C6—C5—C10—C9	-0.9 (3)
C1—S1—C3—N1	-0.29 (18)	C4—C5—C10—C9	176.01 (18)
C1—S1—C3—N2	-179.07 (18)	C6—C5—C10—C11	179.03 (17)
C3—N2—C4—O1	2.5 (3)	C4—C5—C10—C11	-4.1 (3)
C3—N2—C4—C5	177.13 (17)	C12—O3—C11—O2	2.8 (3)
O1—C4—C5—C6	90.0 (2)	C12—O3—C11—C10	-177.14 (19)
N2-C4-C5-C6	-84.6 (2)	C9—C10—C11—O2	173.3 (2)
O1-C4-C5-C10	-87.0 (3)	C5-C10-C11-O2	-6.7 (3)
N2-C4-C5-C10	98.4 (2)	C9—C10—C11—O3	-6.8 (3)
C10-C5-C6-C7	0.4 (3)	C5-C10-C11-O3	173.25 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N2—H2A…N1 ⁱ	0.86 (2)	2.06 (2)	2.913 (3)	175
С9—Н9…ОЗ	0.93	2.40	2.725 (3)	100
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.				

